An Asp–CaM complex is required for centrosome–pole cohesion and centrosome inheritance in neural stem cells
نویسندگان
چکیده
The interaction between centrosomes and mitotic spindle poles is important for efficient spindle formation, orientation, and cell polarity. However, our understanding of the dynamics of this relationship and implications for tissue homeostasis remains poorly understood. Here we report that Drosophila melanogaster calmodulin (CaM) regulates the ability of the microcephaly-associated protein, abnormal spindle (Asp), to cross-link spindle microtubules. Both proteins colocalize on spindles and move toward spindle poles, suggesting that they form a complex. Our binding and structure-function analysis support this hypothesis. Disruption of the Asp-CaM interaction alone leads to unfocused spindle poles and centrosome detachment. This behavior leads to randomly inherited centrosomes after neuroblast division. We further show that spindle polarity is maintained in neuroblasts despite centrosome detachment, with the poles remaining stably associated with the cell cortex. Finally, we provide evidence that CaM is required for Asp's spindle function; however, it is completely dispensable for Asp's role in microcephaly suppression.
منابع مشابه
CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response
The centrosomal protein, CDK5RAP2, is mutated in primary microcephaly, a neurodevelopmental disorder characterized by reduced brain size. The Drosophila melanogaster homologue of CDK5RAP2, centrosomin (Cnn), maintains the pericentriolar matrix (PCM) around centrioles during mitosis. In this study, we demonstrate a similar role for CDK5RAP2 in vertebrate cells. By disrupting two evolutionarily c...
متن کاملAsymmetric Inheritance of Centrosome-Associated Primary Cilium Membrane Directs Ciliogenesis after Cell Division
Primary cilia are key sensory organelles that are thought to be disassembled prior to mitosis. Inheritance of the mother centriole, which nucleates the primary cilium, in relation to asymmetric daughter cell behavior has previously been studied. However, the fate of the ciliary membrane upon cell division is unknown. Here, we followed the ciliary membrane in dividing embryonic neocortical stem ...
متن کاملStudies of haspin-depleted cells reveal that spindle-pole integrity in mitosis requires chromosome cohesion.
Cohesins and their regulators are vital for normal chromosome cohesion and segregation. A number of cohesion proteins have also been localized to centrosomes and proposed to function there. We show that RNAi-mediated depletion of factors required for cohesion, including haspin, Sgo1 and Scc1, leads to the generation of multiple acentriolar centrosome-like foci and disruption of spindle structur...
متن کاملDrosophila neuroblasts retain the daughter centrosome
During asymmetric mitosis, both in male Drosophila germline stem cells and in mouse embryo neural progenitors, the mother centrosome is retained by the self-renewed cell; hence suggesting that mother centrosome inheritance might contribute to stemness. We test this hypothesis in Drosophila neuroblasts (NBs) tracing photo converted centrioles and a daughter-centriole-specific marker generated by...
متن کاملThe Drosophila Protein Asp Is Involved in Microtubule Organization during Spindle Formation and Cytokinesis
Abnormal spindle (Asp) is a 220-kD microtubule-associated protein from Drosophila that has been suggested to be involved in microtubule nucleation from the centrosome. Here, we show that Asp is enriched at the poles of meiotic and mitotic spindles and localizes to the minus ends of central spindle microtubules. Localization to these structures is independent of a functional centrosome. Moreover...
متن کامل